
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

ADB101693

Approved for public release; distribution is
unlimited.

Distribution authorized to U.S. Gov't. agencies
and their contractors; Critical Technology; FEB
1986. Other requests shall be referred to Rome
Air Development Center, Griffiss AFB, NY 13441-
5700. This document contains export-controlled
technical data.

RADC ltr 7 Jan 1988

^^ " "J' • • I i I . 1' .»^W^^^^^WPWIWWWWPWWWiB—l

CO

CD

CO
I

D
<

RADC-TR-85 239
Final Technical Report
February 1986

VISIBLE LANGUAGES FOR PROGRAM
VISUALIZATION
Sponsored by
Defense Advanced Research Projects Agency (DOD)
ARPA Order No. 4469

Dr. Ronald Baecker, Aaron Marcus, Michael Arent, Tracy Tims
and Allen Mclntosh

K

m

.«si

DISTRIBUTION LIMITED TO U.S. 60VERNMENT ABENCIES AND THEIR CONTRACTORS; CRITICAL
TECHN0L06Y; Fet 86. OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED TO RADC (COB),
BRIFFISS AFB, NY13441-5700.

O

INFORMATION SUBJECT TO EXPORT CONTROL LAWS
This document may contain Information subject to the International
Traffic In Arms Regulation (ITAR) or the Export Administration
Regulation (EAR) of 1979 which may not be exported, released, or
disclosed to foreign nationals inside or outside the United States
without first obtaining an export license. A violation of the ITAR or
EAR may be subject to a penalty of up to 10 years imprisonment and a
fine of $100,000 under 22 U.S.C. 2778 or Section 2410 of the Export
Administration Act of 1979. Include this notice with any reproduced
portion of this document.

The views and conclusions contained In this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either
expressed or Implied, of the Defense Advanced Research Projects Agency or the
U.S. Government.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base. NY 13441-5700 ^

*6 5 I

$$

0?4L

M - - - —- — -

•*"T ^^ '*•••• '• •• "

RADC-TR-85-239 has been reviewed and is approved for publication

APPROVED:

APPROVED

w r .* .*

•Ww* | ÜIIWWVC
r

ANDREW J. CRUSCICKI
Project Engineer

/? Q , sL^U^
RAYMOND P. URTZ, JR.
Technical Director
Command and Control Division

t

FOR THE COMMANDER £^£> \M OJJ.1M)

RICHARD W. POULIOT
Plans and Programs Division

DESTRUCTION NOTICE - For classified documents, follow the procedures in
DOD 5200,22-M, Industrial Security Manual, Section 11-19 or DOD 5200.1-R,
Information Security Program Regulation, Chapter IX. For unclassified,
limited documents, destroy by any method that will prevent disclosure of
contents or reconstruction of the document.

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COEE) Griffiss AFB NY 13441-5700. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

- ----- - - - — -»•---* - — _J

VISIBLE LANGUAGES FOR PROGRAM
VISUALIZATION

VAN

Contractors: Human Computing Resources Corp.
Aaron Marcus and Associates

Contract Number: F30602-83-C-0173
Effective Date of Contract: 20 October 1982
Contract Expiration Date: 30 September 1985
Short Title of Work: Program Visualization
Program Code Number: 4D30
Period of Work Covered: September 1982 - September 1985

m^JL

Principal Investigator
Phone Number

Dr. Ronald Baecker
(416) 922-1937

RADC Project Engineer:
Phone Number:

Andrew Chruscicki
(315) 330-4063

">.•

t

Distribution limited to U.S. Government agencies and their
contractors; critical technology, Feb 86. Other requests for
this document shall be referred to RADC (COEE) Griffiss
13441-5700.

iffiss AFBJJi

EL.ECTE

m o 5 ^986

v.\\<

i

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Andrew J. Chruscicki (COEE) Griffiss AFB NY 13441-5700, under
Contract F30*02-83-C-0173.

• • • • • . • . - .^» . - L*« . » _*• J** J* _ - . - L"
• .-_ • ".*.

. • . *. -,.- .^ ,-• ."•

7ZZ???Vn:?^^ iiiuuvirvv

Program Visualization Project
Hufz'i Computing Resources
A&rufi *-tüTL«s .nie Associates

Final Report:
Theory. Results.
Conclusions

Page iii

Acknowledgments
Human Computing Resources Corporation (HCR) and Aaron
Marcus and Associates (AM + A) carried out the program visualiza-
tion research and prepared this final report.

yv

Ron Baecker, Chairman of the Board of HCR, and Aaron Marcus,
Principal of AM+A, were co-principal investigators, conceptualiz-
ing, structuring, and supervising the research. Michael Arent,
Design Director of AM+A, played a key role throughout the
research and in the development of the C language specifications
and the preparation of the report. Baecker, Marcus and Arent did
the conceptual work on prototype visualizations for the C language,
and were assisted in their preparation by Bruce Browne, Designer
at AM+A and John Longarini, programmer at HCR. Paul Breslin,
Longarini, Allen Mclntosh, Chris Sturgess, and Tracy Tims, pro-
grammers at HCR, wrote the software that enabled C programs to
be compiled and displayed automatically in the manner recom-
mended by the manual. David Slocombe, President, Soft Quad, Inc.,
Toronto, also contributed software development under contract to
HCR. Baecker was the primary author of the bulk of the report,
with significant collaboration from Marcus, Arent, Tims, and Mcln-
tosh.

The US Defense Department's Advanced Research Projects
Agency, System Sciences Division, funded this project under ARPA
Order 4469. We are indebted to Craig Fields, Clint Kelly, and
Steve Squires of DARPA and Andrew Chruscicki of the Rome Air
Development Center for their support.

We are particularly grateful to Michael, John, and Tracy for the
extraordinarily long hours they spent in the final stages of complet-
ing this final report. We should also like to thank a number of indi-
viduals, Lu-anne Lee, Barb McLatchie, Janice Herrington, and
Karyn Baecker, who assisted in the compilation and preparation of
the report.

$M
>LV

'THIS MATERIAL MAY BE REPRODUCED BY OR FOR THE U.S. GOVERNMENT
PURSUANT TO THE COPYRIGHT LICENSE UNDER DAR 7-104.9(a)."

m$
k>\

»Wf^^*? • »"•••• •'• ^^PPJPJP wmm***m p-l.l. j.|. I , IV^I

Program Visualization Project Final Report
Human Computing Resources Theory, Resb
.Y>ron Marcus and Associates Conclusions

Page iv m.
Preface
When you make a thing, a thing

that is new, it is so complicated
making it

that it is bound to be ugly.
But those that make it after you,
they don't have to worry

about making it.
And they can make it pretty, and

so everybody can like it
when the others
make it after you.

*y.

•"•:

Picasso (as quoted by Gertrude Stein)'

[From Victor Papanek (1982), Design for the Real World,
London: Granada Publishing, p. 131.]

\\-

a
:-v-

v:

A--i -S->
-'-V.

•k-V -'•!.-•• - "•A'-- '--% •'* -» -' ->^*> -%-V-V _;..»->- •- ^- *,- -'»"'»*-'•-> -'••

pr.^WTV.yy.**v*v«'^T^TVrJ•^y.TwrwV" VT";-m:m:-•".v.".^ »^.v"T v*w Jp»''.".' •.»»»MHH•»• tM t M • BUPHI

v>\

Program Visualization Project
Human Comparing ReiourcM
Aiiuu M*;cUI anc Associates

Finai Report
Theory, Results.
Conclusions

Page v

Page Table of Contents

1 Chapter 1: Introduction
3 Our Approach
5 Programs as Publications
6 The Goal of Our Research
7 Methodology of Our Research
9 The Final Report and the Deliverables

£r*%
v«\- w
w
»v • •" '•" "
\'-\ •* J1 '
L • - » * * *
££ ,->;•

11 Chapter 2: An Example of the Design of Program Appearance

28 Chapter 3: C Program Books
30 Secondary Text: Front Matter
31 Tertiary Text: User Documentation
32 Primary Text: The Program
33 Secondary Text: Metadata and Commentaries
34 Tertiary Text: Indices and Overviews
35 Tertiary Text: Programmer Documentation

36 Chapter 4: Graphic Design of C Source Code and Comments
38 The Presentation of Program Metadata
39 The Spatial Composition of Comments
41 The Typography of Punctuation
42 Typographic Encodings of Token Attributes
44 The Presentation of Preprocessor Commands
45 The Presentation of Declarations
46 The Visual Parsing of Expressions
47 The Visual Parsing of Statements
49 The Presentation of Function Definitions
50 The Presentation of Program Structure

51 Chapter 5: Conclusions

53 Chapter 6: Future Research

58 Appendix A: Bibliography

(Accession For

NTIS GRAftI
DTIC TAB
Unannounced *
Justification——

By - •
Distribution/

Availability Cedes

(Avail and/or
Dist Special

^.V
&*

6H

v:£v-:

* \gS_ v

r.v

.^"A^-V
.'' »"•-'• vy*** .** .'• -"* •*• •"•-"• • *• ."• - * •*• ."• - • •*- *'*y-y* •"*• •"• -*" -" -">v **•*-"'."- ."• •,*- »^v- »"-V-V- .••\^\>"

r*frfrl

Program Visualiidiion Projeci
H'jnwn Computing Resources
Aaron Marct« a^rf Associates

Final Report:
Theism Results.
« oncuKions

Page

Pas e List of Figures

15 A listing of a simple desk calculator program produced on a dot
matrix line printer

19 A listing of the desk calculator program produced on a laser printer
23 The desk calculator program produced on a laser printer using the

SEE program visualizer
29 The structure of a program book

*

&>:->

• - •. *

h i> »>

-A

v-v

\'-V

»- •.

^i^. — • A _^-

1 '• I ~« »^J "^. «r „ f^www

.A "-* «•••

% % S * V -J -.' &i£

Program Visuali-?t;or Projert
l-'uman Compu»*"» fcesowce*
",^fi-*n McfCM And Asioriaifs

Final Report
Th -try, Results
Conclusions

Chapter I:
Introduction

Page 1

•>:AV7

Chapter 1 Introduction
The continuous and spectacular development of computer hard-
ware that has occurred over the past four decades has finally
been matched in recent years with corresponding advances in
software engineering, that is, in the technology and processes of
software development.

WW

Typically, efforts have been made on a number of fronts. The
most widespread development has been the concern with the logi-
cal structure and expressive style of programs. Out of this con-
cern have emerged many of the modern software development
techniques, including top-down design and stepwise refinement
[Wirth, 1971], structured programming [Dahl, Dijkstra & Hoare,
1972], modularity [Parnas, 1972], and software tools [Kernighan
& Plauger, 1976]. A second development has been the marked
improvement in the clarity and expressive power of programming
languages, as can be seen for example in Modula [Wirth, 1977].
Another kind of development has occurred in the organization
and management of the team that produces the writing. This has
given rise, for example, to the concepts of chief programmer
teams [Baker, 1972] and structured walkthroughs [Yourdon, 1979].

The above advances have not been aided by progress in interac-
tive computer graphics, but some other areas have benefited. It is
now possible to construct interactive editors for various graphic
notations that express algorithms and data structures, for
example, Nassi-Schneiderman diagrams [Nassi & Schneiderman,
1973], Warnier-Orr diagrams [Higgins, 1979], contour diagrams
[Organick & Thomas. 1974], and SADT diagrams [Ross, 1977]. (See
[Martin & McClure, 1985] for a recent survey of these diagramming
schemes and notations.) Even more significant is the increasing
interest in enhancing the technology to support the writing and
maintaining of good programs by providing, for example, integrated
software development environments [Wasserman, 1981] such as
INTHRLISP [Teitelman. 1979] and high-performance personal works-
tations specialized to the task of program development [Gutz,
Wasserman & Spier, 1981].

U
w\ -•

•-V-V A
VVVA

l\

How have these developments improved the daily life of most pro-
grammers? Almost all have benefited from the use of modem pro-
gramming languages. On the other hand, the impact of new
software development methodologies, programmer team organiza-
tions, graphic diagramming notations, and sophisticated

« 1 . « V

El

W»J».P.J t I.IJ'II p • ' I """ vw

Progiam Visualization Project
Human Computing Resources
.V-o" Varcus and Associates

Final Report:
Theory, Results,
Conclusions

Chapter 1:
Introduction

Page 2

programmer development environments has been limited for the
most part to those working in research laboratories and in large
corporate programming shops. Significant assistance has not yet
been available to the lone programmer or small programming
group who typically work in BASIC or C on systems of moderate
complexity.

-.

V-. .--

r v^

Is,

to

• -

'.•:•-•"•.-*•

v.--;«

V.V.

•Vvv*'

v_^_
- - • *— -

.-:,-_. _v.v.

p^- VK**!f . iiii n * ^M,..,.m.r,ri"J«i"jJ'fW -•

^ ^££

Program Visualization Projf"
Human Computing Resources
Aaron Marcus and Associates

Final Report:
Theory. Results.
Conclusions

Chapter I:
Introduction

Section 1.1:
Our Approach

Page 3

Section 1,1 Our Approach

We have taken a different approach in our recent work [Marcus
& Baecker, 1982; Baecker & Marcus, 1983]. We focused on every
programmer's vehicle of discourse: the program, expressed in
some computer language and appearing in some form on some
physical medium.

Since the advent of programming, the technologies of the video
display terminal and the line printer have limited the presentation
of a computer program's source code and comments to the use of a
single type font, at a single point size, with fixed-width charac-
ters, and sometimes without even the use of upper and lower case.
The technologies of high resolution bit-mapped displays, laser
printers, and computer-driven phototypesetters, on the other hand,
allow for the production of far richer representations, embodying
multiple fonts, non-alphanumeric symbols, variable point sizes,
variable character widths, proportional character spacing, variable
word spacing and line spacing, gray scale tints, rules, and arbi-
trary spatial location and orientation of elements on a page. We
therefore explore systematically in our work how these capabili-
ties can be used to enhance the art of program presentation.

Our work thus encompasses the field of prettyprinting, an area in
which others before us have worked with more limited graphics
tools. The earliest work was done on LISP, so that program readers
would not drown in a sea of parentheses. The problems of pretty-
printing PASCAL have elicited a long correspondence in the ACM
SIGPLAN notices [Hueras & Ledgard. 1977; Grogono, 1979; Gustaf-
son, 1979; Leinbaugh, 1980]. A discussion of prettyprinting algo-
rithms and their complexity has appeared [Oppen, 1980]. Other
authors [Rose & Welsh, 1977; Rubin, 1983] demonstrated methods
of extending the syntactic descriptions of programming languages to
include their formatting conventions. One paper [Miara. Mussel-
man, Navarro & Schneiderman, 1983] includes a review of a num-
ber of human factors experiments concerning the effect of program
indentation on program comprehensibility. Unfortunately, these
experiments have generally failed to provide experimental confir-
mation of what every programmer knows: a program's appearance
dramatically effects its comprehensibility and useability.

Our work however goes significantly beyond suggesting recom-
mended conventions for appearance that enhance the prettyprinting
of program code. We have also developed a flexible tool with

w -

i

Ü

- - - - - - J— •^t_ - - - - -' ,• - - _ **

•-" ••* •»* .';

^T^^^

m
:p9
v\'Vi

." * .* . * -"'

• *.••*•.*

•*Y*Y»".%' •. « »

...

i
^*!*****^^* WJ rjjk fW^/ff« P<^"9iPPi^iPVf

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report:
Theory, Results.
Conclusions

Chapter 1:
Introduction

Section I.I:
Our Approach

Page 4

'•V-V'

which future programmers and human factors specialists may
tune and improve these conventions, thus paving the way for suc-
cessful standards. In addition, we have considered the entire con-
text in which code is presented, a context which includes the sup-
porting texts and notations that make a program a living piece of
written communication.

\

:... J
I
r.

I

>.v. yvv

>>>y>y-y>;^^ *^*m

U«."lH,JI '••'•" ^^^^» w^iv^^^^m

Program Visualization Project
H'!"-an f^mnuting Resources
V_ irti MarctM and Associates

Final Report:
Theory. Results,
Conclusions

Chapter 1:
Introduction

Section 1.2:
Programs as
Publications

Page 5

k

&•

Section 1.2 Programs as Publications

Programs are publications, a form of literature. Just as English
prose can range in scope from a note scribbled on a pad to a his-
torical treatise appearing in multiple volumes and representing a
lifetime of work, so do we find a variety of programs ranging
from a two line shell script created whenever needed to an edition
of the collected program works of a laboratory, as is the case, for
example, with the UNIX (tm) operating system. (See [Lions, 1977]
for an early example of this idea applied to the UNIX kernel.) The
line printer listing, which represents the output of conventional pro-
gram publishing technology, is woefully inadequate for documenting
an encyclopedic collection of code such as the UNIX system, or
even for such lesser program treatises as compilers, graphics subrou-
tine packages, and data base management systems.

'I'm "" < "-* WM

What we have done, therefore, is to apply the tools of modern com-
puter graphics technology and the visible language skills of graphic
design, guided by the metaphors and precedents of literature, print-
ing, and publishing, to suggest and demonstrate in prototype form
that enduring programs should and can be made more accessible
and more useable.

We divide the content of a program into three kinds of text: pri-
mary, secondary, and tertiary. Primary text includes what typi-
cally appears in a program listing: the program code and comments.
Secondary text includes various metadata describing the context in
which the program is used and various short commentaries (often
mechanically produced) pointing out salient features of the pro-
gram. Tertiary text includes the various longer descriptions and
explanations of the program that typically are called documenta-
tion.

(tm) UNIX is a trademark of AT&T Bell Laboratories.
<%"* ü1*'- *

.' -• -.• -.-* _- - . - • - . • . - - -'. --. •-- •*. -'.
;>>>•:-•

- •*.•-.-*

^w^wyp^wypy,!t^i i^ 3j ^ i ufu111 wj' ^.i •]. •,>''.'J'j 'j '.i^ 'i»^y^,>'J,MJlJ.^Ji3y|-^J'!»^• ^. ^-'^j^r>Jf v1 •'r^^'.1 »J* ^v'.vi'.^1^ L^1.^

Ii2 rou d^rpa Tinalreport 30 A ug 15:14 Revision 3.3 Printed 30 Aug 85

Progrj.Tt ^ isualization Project
Human Computing Resources
Adu.it Marcus and Associates

Final Report Chapter 1:
Theory. Results. Introduction
Conclusions

Section 1.3:
The Goal of Our
Research

Page 6

Section 1.3 The Goal of Our Research

Our goal has been to take a fresh approach to the presentation of
source text, and thereby to make it:

— more legible

— more readable

— more intelligible

— more vivid

— more appealing

— more memorable

— more useful

— more maintainable.

v-/-. «

K v>:

•vv

r*r

I' \"-v-/

• •' -•• -"

••'•.'I-.A.-.-'.'.-.'-V.--.'- _ . -•' -V. -.'-•••_•.•.•.-A'--J.'-%-•.'....•. •• - ».- --• --. ..«--•.,. •-•••:•;•
• .v
tu

^^ 1 ' • «." "• ^ "*\ "WT '«~^Y WF^^W ^^^^•fp^^f^

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report:
Theor\. Results.
- ondusions

Chapter I:
Introduction

Section 1.4:
Methodology of Our
Research

Page 7

Section 1.4 Methodology of Our Research

Our research has proceeded as follows:

We first developed a graphic design taxonomy for computer-based
documents and publications. This was intended to be a checklist
for approaches to enhancing source code presentation [Gerstner,
1978; Ruder, 1973; Chaparos, 1981].

We simultaneously developed a taxonomy of C constructs, a sys-
tematic enumeration and classification of aspects of the language
[AT&T. 1985; Kernighan & Ritchie. 1978; Harbison & Steele, 1984].
This was intended to be a companion checklist for insuring com-
pleteness in the representation of C source text. We subsequently
reworked our taxonomy slightly to make it maximally consistent
with the presentation in [Harbison & Steele, 1984]. We chose to
work with C for a number of reasons: its commercial importance,
its illegibility, and its unreadability.

Next, we collected and systematized typical mappings from C con-
structs to typographic constructs, examples abstracted from real C
programs prepared by typical experienced C programmers.
Because these examples often embody real design insights from
non-designers, we call them "folk designs".

iVTCv:

^V_V-

••-:-/•:'•

-"-V.

Then, we developed a systematic approach to the design of map-
pings from C constructs to typographic constructs, an approach that
forms the basis for detailed visual research into effective presenta-
tions of C source code. We shall describe the approach in detail in
this report and illustrate it via an application to a concrete
example.

To test our systematic approach to the design of program presenta-
tion, we constructed SEE, a visual C compiler, a program that maps
an arbitrary C program into an effective typeset representation of
that program. A description of the implementation appears in Vol-
ume 6 of the report. We have produced numerous examples using
this automated tool, which has in turn enabled us to improve the
graphic design of program appearance. Some of the examples are
collected in Volume 3 of the report. The final specifications were
then embodied in a graphic design manual for the appearance of C
programs. This manual is Volume 2 of the report.

,' v*

Finally, we shifted our viewpoint away from the details of code .-•>
:&

.•* -v _->. .
.>>;•

\ «.
:•-::•-': ftWtWSS

-^*— *-• ."-* '-« &JLJ>+ .•_. \A -. •- •£wira

>/.-_

. - V \ -'V

^___

••••"••" -r y ^^^ • •"I
«*•

Program Visualization Project Final RtpO
Human Computing Retourcn Theory, Re
.*.* Marcus and Associates Conclusior

Chapter I:
Introduction

Section 1.4-
Methodology of Our
Research

Page

appearance and considered the larger issue of the function, struc-
ture, contents, and form of the program book, the embodiment of
the concept of the program as a publication. Although we did not
fully automate its production, we developed and have included as
Volume 5 of the report a mock-up of a prototype of a program book,
For comparison purposes, we have included as Volume 4 "the same'
listings and documentation in the form in which programmers
would currently receive it.

•V!

'*,:

i
ft**»

m

ü
- --. •* -• v**- - - . -" A "- *'• **- •*- " •
- • - - "•,•*.•"---'.•.- • " ^*.«

•

>:•:• * :*•: .

Program Visualization Project
Human Computing Resources
Aaron Marcus arc* Associates

Final Report:
Theory. Results,
Conclusions

Chapter 1:
Introduction

Section 1.5:
The Final Report and
the Deliverables

Page 9

Section 1.5 The Final Report and the Deliverables

Volume 1: Theory, Results, and Conclusions

This volume presents the theory, summarizes the results, and sug-
gests the conclusions that may be derived from the overall work.

Volume 2: A Graphic Design Manual for C

Volume 2 summarizes our systematic approach to the design of
program presentation from a graphic design perspective. It is
therefore a graphic design manual for the appearance of C pro-
grams and C program books.

2&

m

Volume 3: Graphic Design Variations of C Program
Appearance

Volume 3 presents selected examples of C program visualization
that can be realized with the SEE program visualizer and that
present significant variations of the recommended conventions.

Volume 4: Traditional Listings and Documentation for
the Eliza Program

Volume 4 presents the listings and documentation for a program
in its typical form of appearance. The program shown is Joseph
Weizenbaum's famous Eliza program [Weizenbaum, 1966]. Henry
Spencer of the Department of Zoology of the University of
Toronto has implemented this new version. r\V.

Volume 5: A Prototype Program Book of the Eliza
Program

Volume 5 illustrates the concept of the program as a publication.
A mock-up of a prototype program book of the Eliza program
appears. Included in the mock-up is the primary source text, the
code and comments, which were automatically typeset by the SEE
program visualizer.

Volume 6: A Program Visualization Implementation

Volume 6 describes the implementations of SEE and of the UNIX
TROFF [Kernighan, 1982] typesetting macro packages used to for-
mat program visualization text and programs.

• •

t^£.

', • . •

&*. -M* v.
:*^ „•-•^.-M„

• *_> - »

V.

-- "-«-«-'

>>

 .'• im

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report:
Theory. Results.
Conclusions

Chapter 1:
Introduction

Section 1.5:
The Final Report and
the Deliverables

Page 10

Deliverables

These six volumes comprise the Final Report and the Graphic
Design Manual to be delivered to DARPA as per the Contract Data
Requirements List of Contract Number F30602-82-C-0173. In par-
ticular, referring back to the Statement of Work, Section 4.2, the
"typeset examples" of Section 4.2.1 are included in our Volumes 1
through 3 and 5; the "program" of Section 4.2.2 is described in our
Volumes 1 and 6, the "Graphic Design Manual" of Section 4.2.3 is
our Volume 2; and, the "report" and "image sequences" of Section
4.2.4 are included in our Volumes 2 through 5.

A Program Visualization video tape is being prepared which illus-
trates the objectives, goals, method, results, and significance of our
work in a more informal manner. A magnetic tape containing the
implemented program is available where appropriate.

Finally, we note that the typeset examples in Volumes 1, 3, and 5
wre prepared "almost totally automatically" by SEE. Electronic or
manual fix-ups were used to fix three bad line breaks in Volume 5,
to add some white space in two recurring kinds of locations in Vol-
umes i and 5, to fix roughly six bad page breaks in Volumes 1 and
5, to add letratone, an occasional bracket, and the pointing fingers
that appear in Volumes 1, 3, and 5, and to add the footnotes shown
in Figure 50 of Volume 3. For comparison purposes, fingers have
only been used in the example in Volume 1, the first five figures in
Volume 3, and one file of Eliza in Volume 5.

&foa
VMM

::•:••

F.

:•:•:••

i

* .

s m
i

V *-" V -.-• '. -. ' '. *. .^ .*- , » , » . • .. I - » B 1

..T.Wr*'l,l''."-,-"<»' ••^^^''^, VV'^VMAV«,JiM\iFM^nill'.^WWB*^l^^l^'^^3,^^y^ '.M.H^MUl^iVHfmm

Program Visualization Project Final Report Chapter 2: Page II
Human Computing Resources Theory. Results. An Example of the
Aaron Marcus and Associates Conclusions Design of Program

Appearance

The program is shown again as Figure 2 on pages 20 through 22.
This time it has been output on a modern laser printer. It appears
in exactly the same format as does Figure 1, and again uses fixed
width type in a single font at a single point size. Legibility and
readability are somewhat enhanced.

The Presentation of Program Metadata

1. The program is presented on a standard 8'/= x 11 inches page that
is separated into four regions, a header, a footnote area, a code
column, and a marginalia comment column.

2. The header contains key document metadata describing the
context of the source code that appears on the page, including the
location of the file from which the listing was made and the page
number within the listing.

- » » - " «. -
chapter 2 An Example of the Design of
__^__ Program Appearance jjjgg^

Our example consists of a slightly updated version of a desk cal-
culator program that appears in a standard book on C [Kernighan
& Ritchie, 1978]. JVS"

The program is shown as Figure 1 on pages 16 through 18 as it is £
output on a typical dot matrix line printer, a device similar to that
used by tens of thousands of programmers of microcomputers and
minicomputers. Even the lightness of the type, caused by a worn
out ribbon, reflects an unfortunate aspect of the way most line
printers are used. This of course impedes legibility and readabil-
ity.

:..'-• v -a

Figure 3 on pages 24 through 27 shows the output from the cur-
rent version of the SEE processor to the same laser printer with an
appropriate set of fonts. The C program was not modified at all for
input to SEE; exactly the same text was input to the listing program
that produced Figures 1 and 2. The SEE output was massaged only
in the introduction of some white space to improve the way in
which the program is paginated, since white space introduction and
pagination are not yet handled automatically by SEE. The subtitles
below refer to categories of program visualization improvements
discussed later in this volume; the numbers in the margin of Figure
3 refer to various items in the following commentary:

fcv>:

.•*•

i-»-' »A *_!_*_'. *A «JUi^iiiiA.V.Ai.'. «_"W.^- !__. 1 _ « _ I -

'JU W 'JWWIW^W »VTJ T »n. ^X^M•v PJ^J^^^^^j^^*^
rV« »v<

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report: Vo;
Theory, Results.
Conclusions

Chapter 2:
An Example of the
Design of Program
Appearance

Page 12

The Spatial Composition of Comments

3. Comments that are external to function definitions are
displayed in a small-sized serif font inside an outline box. There is
ample margin allowance around the text to ensure optimum legibil-
ity and readability.

4. Comments that are internal to function definitions are displayed
in a small-sized serif font appropriately indented and marked by a
left vertical bracket.

5. Comments that are located on the same lines as source code,
which we call marginalia comments, are displayed in a small-sized
serif font in the marginalia column. These items are intended to be
short single line phrases.

The Typography of Program Punctuation
6. In this example the ";" appears in 10 point regular Helvetica
type, and thus uses the same typographic parameters as does
much of the program code. The ":", on the other hand, has been
set in bold type, and the "," has been enlarged to 14 point. These
distinctions highlight the difficulties in achieving legible punctua-
tion with currently available typefaces. The bold is often slightly
too heavy; the regular weight is sometimes too easily overlooked
if the original has been poorly displayed with badly adjusted
equipment or if it has been degraded through photocopying. In
addition, idiosyncratic size changes for particular characters in
particular fonts are often desirable.

7. Symbols such as the " + +" and the "- -" have been kerned, that
is, the letter spacing of individual characters overlaps to make
them more legible and readable.

8. Symbol substitutions have not been introduced for symbols that
clearly need improved appearance, e.g., the **>=", and **= = ".
Whether or not these substitutions are invoked should be deter-
mined by a flag under control or the user. Legibility criteria
would suggest innovation; however, reader familiarity and direct
semantic reference to two input keyboard strokes would suggest
the conventional alternative that we currently recommend. For
an example of this, see Volume 3, Figure 20, page 28.

m

m
••:••

• :-"-:.-•>

•:--:-•:--:

.• A,

.- s.- v

„- .-

•-,••:

>:-:•:•:•:•:•>:•

^:::>i ;:i-:& <<;•:: :^

5.TviMj^.^^^^^3wi.^:^^^^v^^^H,.,^r,,.iri- •• p'. . Ml1" • -• •t •.••••' J •>• H1 i.U^'l ilil'tt"1« -iji."

Program ^ isualizalion Project
HuTian i ompuiing Resources
A:-.- Marcucari^ '.üccivn

Final Repon:
i'heorv. Results.
Conclusions

Chapter 2:
An Example of the
Design of Program
Appearance

Page 14

The Presentation of Function Definitions
19. The introductory text of a function definition, that is, the func-
tion name, is shown in bold sans-serif type.

20. A heavy rule appears under the introductory text of a func-
tion definition.

21. A light rule appears under the declaration of the formal
parameters.

s>>
tap**-

The Presentation of Program Structure
22. The global variable in C is a fundamental mechanism through
which functions can communicate indirectly, and as such also rep-
resents a major potential source of programming errors. We
therefore call attention to most uses of globals (but not manifest
constants) by highlighting them in bold face.

r.v?

23. Cross-references relating identifiers used in one file to the
location of their definitions in another file could be included as
footnotes to the source text. For an example of this, see Volume 3
Figure 50. page 65.

L4V

b&

•

»

_ - . - • . _^_«^, * . ^—

JUMJ.I. JIP.'JJP I | i.i.i.i iLi.i.iiIi PfPfPfWPpPf W*
_r T> ".**> ^ * iA

Profram Visualization Project
Human Computing Resources
A^r:r Marcus ar.d \sscci~-?s

Final Report:
Theorv. Results.
Cor:!' sions

Chapter 2:
An Example of the
Design of Program
Appearance

Page IS

Figure 1: A listing of a simple desk calculator program produced on
a dot matrix line printer

(See next 3 pages.)

y.

• -•-

vi:v,.

- -

'

>">•%

>W •.

.^^^ _.

fim*vm*^^ßm^^^^^*m^^*m^^m^mmi M^ jfii^M|H 'U _ • _^ •> jffffW^v^L'ij •; \f

i

Page 18

Aug 3© 11:49 1985 eolO.C Page 3

i t (buf p > BUFSIZE)
printf("ungetch: too many charoct•r$\n")

CISC

buf[bufp++] • c;

I

•

i

r

i

w
Möwl

•:•.•%••

.

*. i

. "« *. < _-

i *»*»*

i

.-." v y/ •,"•*/-*.**-'. -\ •*. -*. r- •". "• •"* •-'•- *- ••/'•/'•.''-/ -•-*--• . v •-• v •.•

•-. . _'- . _ • 2, -^ * _ -.. -.. •.:» ..-.

t ".* ' " - *

K£3

m
V* •".*" v'vl

* "* - ' * - . « '

•IWMVIV^W^VV^

Program Visualization Projeci
Human Computing Resources
Aaron Marcus and Associates

Final Report:
Theory. Result;
Conclusions

Chapter 2:
An Example of the
Design of Program
Appearance

Page 19

Figure 2: A listing of the desk calculator program produced on a
laser printer

(See next 3 pages.)

>.v

W~

•>:•:•:•

. * -•»•«' _» • J» • J»^1 V* -" - • «% • *-# F ." «W» -". •»N*» » .A L% h^<» • - • ." /.

f-*-»»--J'"l*,--T,',"w**,*T-T-''-7^^

v.v
Page 20

This reverse Polish desk calculator adds* subtracts, multiplies and
divides -floating point numbers« It also allows the commands '•• to
print the value o-f the top o-f the stack and to clear the stack

«•include <stdio.h>
«define MAXOP 20
«de-fine NUMBER '0'
«de-fine T00BI3 '9*

/* ma:< size o-f operand» operator */
/• signal that number -found */
/* signal that string is too big */

Control riodule

tim

:alc()

int type!
char SCMAX0P3?
double op2.

at o-f () t
pop () *
push();

/* operation type */
/* buffer containing operator */
/* temporary variable */
/* converts strings to -floating PGINT
/* pops the stack */
/* pushes the stack */

fcV."

/* loop while we can get an operation string and type */

while ((type m getopCs. MAXOP)) !• EOF)
switch (type)<
case NUMBER:

push (ato-f (s)) ;
break;

case ••*:
push(pop() •*• pop ()) ;
break;

case **••:
push(pop() * pop<));
break;

case '-':
op2 • pop()J
push(pop() - op2)1
break ?

case »/•:
op; • pop();
if (op2 '» 0.0)

push (pop() / op2)'
else

print-f ("zero divisor popped\n");
break;

case '»*:
pr mt-f C*\t*/.-f\n". push (pop ())) ;
break;

case •c*:
clear()*
break•

case TOOBIQ:
print-f ("'/.. 20s ... is too long\n". s>;
break ;

default:
pr mt + ("unknown command 7.c\n". type):
break ;

ffl

E

>ysv
-*.•-•-••-•

• V- -V w - - • - • -'

\V
•-'/

>'--' ••• ••-•• «•
'-. L J

sm: Vy'-V-'.

--.-^ .- :W\W ft '_ hi' Ml '-•---'?-•-"•- I -*> J - ~ - * -

-.

V ' J » ß w^^^^^m i ii ii ii.ii ii Miiiimijn ii i i ii
je^TT S ••• w

Page 21

,\

/* coll act -fraction */

t& c <• '9'; !+•»•)

14 (e H »,ij <
if (i < lim)

sCi3 » c;
•for (i++? (c * getcharO) >

if <i < lim)
«cn » c?

>
if <i < lim) < /* numbtr is ok */

ungetch(c);
scta « •\0'?
raturn(NUMBER):

> alsa < /* it's too big? skip rest of line •/
while Cc !» '\n' &5c c !» EOF)

c • gatchar();
sClim - 13 • '\0'!
return(TOOBIG)?

>

...v- —^*

I

#define BUFSIZE 100

•, 1".

char bufC8UFSIZE3
nt bufp • o;

gatch()

/* buffer for ungetch */
/* next free position in buf */

/* gat a (possibly pushed back) character */

return((bufp > 0) ? bufC—bufp 3 : getchar())i
>

ungetch(c) /* pish character back on input */
int c;
<

if (bufp > BUFSIZE).
printf("ungetch: too many characters\n">;

else
bufCbufp-»-»-} * c;

>
'..%

-"-öS"*

-0

^-^'•-~.-A\ -'.V-V. *•-«. f.

V.V-V.V.

VW.% '-

.-- .-. -

;>A.-y-Ä->>;^ s>>: . ,-->>>>v-:;

••••'•••II T"V\ "3 •- A*V\ "V . ^ ,*m•• r» V • • •JW.y '•!• . "W. V. V V." V V.VWW. V VA'A1

Program Visualisation Project
human Computing Resources
Aaro<> Marcus and Associates

Final Report:
Theory. Results
Conclusions

Chapter 2:
An Example of the
Design of Program
Appearance

Page 23

Figure 3: The desk calculator program produced on a laser printer
using the SEE program visual izer

(See next 4 pages.)

.-. rat,

km

at-

•-••--.

•.%. •,• - •
». v;

Al Ufcjwi^ •-> •-»' A *-» ^"•* •*•--'•-• *-M --* • *' ' -• - *--.--*-

V. -\ -'. •'

—* -••-•' »-'• *-' *-* *-"•«-* »-^'

w^^^~*_ •' ß ß » • ••'••• •! ••^^T^^^^ *»* VfP^P

Piogiain Visualizatu i Project
Human Computing Resources
Aaron Marcus and Associates

Calculator calcic calcO Page 2* fryvM

Chapter 1 calcl.c

This reverse Polish desk calculator adds, subtracts, multiplies and
divides floating point numbers. It also allows the commands '=' to
print the value of the top of the stack and V to clear the stack.

include <stdio.h>
Max size of operand, operator # define MAXOP 20
Signal that number found # define NUMBER '0'
Signal that string is too big # define TOOBIG •9'

Control Module

calco
_• Operation type int type;

Buffer containing operator char s[MAXOP];
Temporary variable double op2,
Converts strings to floating atof(),
point

Pops the slack popO.

•;

Pushes the stack push();

Loop while we can get an operation string and type

white ((type = getop(s, MAXOP)) N EOF)
switch (type)
case NUMBER:

push(atof(s));
break ;

case '+':
push(pop() + popO);
break ;

case '*':
push(pop() • popO);
break ;

case '-':
op2 • pop();
push(pop() - op2);
break ;

,- case '/':
op2 • pop();

.fc if (op2 »= 0.0)
\. push(pop() / op2);

else
printf ("zero divisor popped\n*);

break ;

14

> V

'*:

\m

•.'

^

'A.'."

/-. •_'.-.
IB - - • m

_

.- . * ." .--.-.'•--.-. > Ai v .SV «%*%> vv> vVV '.« V v v v V v V v v V J»?»'

- - - •-* i*rf .-.-•-- ->-«-.-.• .-..' A «L^^-C^^«^-^-» k.
V-A frfrfrj • , ..

FfWMM'JWV'VJM.'IW i.V.M.'WW'WPJWJP. * ^".l',,lwBWVll,r»! l/WuW i-» V
1 I J^HPiULAlUtUlWBlLllW^^l.^nn

Program Visualization Project
Human Computing Resources
Aaron Man m and Associates

Calculator calcic calcO Page 25

Maximum depth of val stack
Stack pointer
Value stack

Stack Management Module

define
int
double

MAXVAL 100
sp = 0;
val[MAXVAL];

W

case '=':
printf("M«7tf\n", push(pop()));
break ;

case 'c':
clear ();
break ;

case TOOBIG:
pfintf ("^>.20s ... is loo long\n"(s);

break ;
default :

printf ("unknown command %c\n", type);

break ;

m

Push f onto value stack

double
push(f)

double

if (sp < MAXVAL)
refurn (val[sp++] = f);

else
printf ("error; stack full\n");

clear();
return (0);

10

,\x"

-:v:.-,

r,
•".V_",*

Pop top value from stack

double
popo

// (sp > 0)
O* return (val[~~sp]>;

else
printf ("error: stack empty n");

clear ();
XT return (0);

22

Clear stack
clearo

sp = 0;

•:-v .-..*. '.- ,• '-•/--v -• V V "•" "•*
- . " «N . - • . * , . *~" • - .'- ."- ."«> • •'- .."*>'• -*- «"• •"• v,"- -

*- y
AV-" :>:>

^-V-.-.-.

••"."*".-•."*.--' »\-V-".'

-. w -. »^ ^-^ —v^r- -^ —j' .*•' 'A W H H l^tWW*WWiWtWI!W>W^^f^^giW>

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Calculator calcl.c getopO Page 26

•
t
) Get next operator or

Operator buffer
operand

Input Module

getOp(s, lim)

char s[];
Size of input buffer int lim;

int i,
c;

| Skip blanks, tabs and newlines

while ((c = getchQ) = " II c = V II c == '\n');

Return if not a number

// (c != '.' && (c < '0' || c > '9'))
IT return (c);

s[0] = c;

1 Get rest of number

for (i • 1; (c = getcharO) >= '0' && c <= "9'; i++)
if (i < Urn)

s[i] = c;
Collect fraction

I
// (c == '.*)

if (i < lim)
s[i] =c;

for (i++; (c = getcharO) >='0' && c <= *9'; i++)
if (i < lim)

s[i] =c;
Number is ok

•

if (i < Mm)
ungetch (c);
s[i] = \000';

I> return (NUMBER);
It's too big; skip rest of line else

while (c != W && c != EOF)
c = getcharO;

s[lim- 1] = "XOOO';
I> return (TOOBIG);

define BUFSIZE 100
. Buffer for ungetch char buf[BUFSIZE];

Next free position ir buf int bufp - 0;

getcho
character

IP
20

21

18

return ((bufp > 0) ? buf [~~ bufp] : getcharO);

'm •'• m m

LVMs
LV.V.V.

". v,

r7_v

.". „\

' A

'- -A.""- - * V * * *." S" -." %' V <" Vk-
.' •- .% *. J>- _•- _"* *• - • .'- fcN '- fc"- .*- /i

.;.\'/.;--.y ;•.-•.;-

•",*•" *"v"j
•"A \VN *.A A

i
M

yM"irT'-' J'PriUMllMmi^ll • 'i •-••-! |. !•!•! *T".TT iF.'vjr'r».1». »»»«'»•.••—MM • i-y^- --T-

Profram Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Calculator cakl c ungetcN) Pafe 21

Push character back on input
latigetch(c)

mt c;

if (butp > BUFSIZE)
pnntf (' ungctch too man> characters n")

else
buf[bufp*+] = c.

>\v

&:k

. •

• s

. r „%

-—-—-—--

Mumjn i .ifT^ruiing Metourrr«
Aaron \1<Fi us and *vmjir»

J in*i Report
trnrt>f* Krtwitt

Muon«
| <m Hoot«

Chapter 3 C Program Books
A program book would t> picall> be composed of pnmar>. sec on
dary. and tertiary texts structured into five parts (see Figurt 4)

The book begins * uh secondary texi known as the "front mat
ter" This may include a cover page, title page, copvnght page,
abstract, authors and personalities page, and program history
page

Chapter 1 is the tertian* text that comprises the user documen-
tation: the command summary and manual page, the tutorial
guide, and the reference manual

Chapters 2 through n* 1 constitute the primary text, the pro-
gram code and comments. Each file of the n files in the pro-
gram appears in a separate chapter. Each program page has
various metadata and commentaries included in its header and
footer.

Chapter n*2 contains more secondary text, various indices and
oven lews. These may include program metrics, program sig-
natures and condensations, a cross reference index, a key word
in context index, a call hierarchy. and various other diagrams.

Chapter n*3 includes the remaining part of the tertiary text,
the programmer documentation: the installation guide and
H\ ADME file, the "make" file, and the maintenance guide.

:

J . *.-

Whereas any listing or representation of the program or of a piece
of it will contain primary text, some or most of these secondary
texts can and will be omitted in a "quick and dirty'4 look at a pro-
gram that is likely to be changed almost immediately, as is the case
when one is creating or debugging code.

The tertiary text is the source of still additional information about
the program, how n was built, and how it is to be used. Even more
so than in the case of secondary text, the investment in the produc-
tion of tertiary text is most easily justified if the program has con-
siderable readership and longevity.

i

v££

/• > •>

.:•.-:

•

. i-.M. .:.::•.•.:-:•-.:.:
- .. X.^. ',•/.:'/•'.'•'."•'•'•'-•'.

v^^*^~W~**^—'^^^m*^^^^^m^^^^*^^*mj1j^i^^^^V^^^^m ••i "I

f*niy iffi \ ivmtuiiiur Project
Hunir (omputing Retourie«

f trvii Report
Theor* Retuitt
< on« tu«iont

< hjptc l

(Program Hoofct
Paar *»

t

Hgure 4: The structure of a program book

Program Book
I he Program

Primary Text

Source Cod« Comments

Support Documentation
^ Secondary Text

Front Matter Metadata Commentary

** Tertiary Text

Indices Overview«
Document«

Programmer
Documents

£3

.

\J V-V".

.-•V-V-"

V

-^.
•- -.

•\ *". *>

• •

V.v

_'. _*. _S JSm \ •-" V" •- -v" •- . v" •.

^-^ •P'P p p •w-p

Crt^um \ isuali/ation Prop*i l
Humin (om puling krvmncs
UfM Man us and •VsMKUtes

1 mal Report C hapter .V Section 3.1:
Theor\ Results. C Program Books Secondary Text
Conclusions Mailer

Front
Page 30

Section 3.1 Secondary Text: Front Matter

Cover Page

A program published in book form may need a cover page identi
fying the book and depicting it with an attractive illustration.

Title Page
The program's title page presents the most important metadata,
such as the program's title, author, company and address of the
author, version, date, publishing source, and level of confidential
ity.

Colophon

The program's colophon presents production information, details
about the typesetting, printing, and distribution of the document.

Abstract

An abstract of the program summarizes what it does, how it
accomplishes it, and why it does it.

* • >>

«

Program History

A design history presents the history of the system from concep-
tion to implementation through recent modification. As program
genealogy, it may also e invaluable in understanding apparently
nonsensical constructs and bizarre artifacts.

--•>"•;

Authors and Personalities

This page lists the authors and other important personalities (e.g.,
augmenters and maintainers) associated with the program, gives
their postal and network addresses, their phone numbers, and
potentially also their photographs [Pike. 1985].

Table of Contents
The table of contents enumerates the major parts of the program.
In the case of a program operating under the UNIX operating sys-
tem, for example, it would probably list the directories and files
and possibly also the defined functions.

sj

••>•..••-

% *. ** ->

•:• •>:•.:-

v •>;•

"•--. j- _•_- -y"-./-_'>-flj-»*-.>>-/ _*"---^» •.«'•j',iNji'.,ij>«''••/-«'••i'' ifll *'r *' -' - ->!--« -"•> • *

»I III -*—*
^^^^^^^^^^VT^T^

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report:
Theory, Results.
Conclusions

Chapter 3:
C Program Books

Section 3.2:
Tertiary Text: User
Documentation

Page 31

Reference Manual

A reference manual is a comprehensive information source on all
features of the system.

^

Section 3.2 Tertiary Text: User Documentation

Command Summary and Manual Page
A summary of commands is essential for every user of any sys-
tem. In the UNIX world, this command summary is often included
in the manual page, or "man page". By convention, one such page
is written to correspond to each UNIX utility or command installed
on the system.

-v-y

•:/'•

Tutorial Guide
A tutorial guide presents a step-by-step introduction to the usage
of the major features of the system.

CM

TTV

*J *-". «-• •_'. .•.«_• *-- *--. ----- . - _ •'_ V - "--._«*_ •*_ .- .• .- v-

- ' .'-.'- -V- \\V*.

•^ii^jijjii, ,L .L_nJUMj,i,,nii^ •A'i '.^ •x'>j.ijujLLpy_MjLf J^^^A^'^ ^ly^-'^••f'^l.JI-•^. ^.^•-.I >J W.,,-"J-"'- ^, •-•• -,'1 - WMIJ 1

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Section 3.3

Final Report:
Theory. Results.
Conclusions

Chapter 3:
C Program Books

Section 3.3:
Primary Text: The
Program

Page 32

Primary Text: The Program

The primary text is the program itself. Its appearance is the topic
of the next Chapter of this report. Each file of the program is
represented by a number of program pages. These pages each
include:

Program Code
The "program books" of today, known as listings, often contain
only code.

Program Comments
Comments appear in various forms and locations on the page, as
discussed in Chapter 4.2 of this volume.

KK

• :•-.

r.\

. *.

'.'•-'"• --!-.-l:v-•••.-.'--/^ %V.'-/-V. •'• .'•• -- . -li> -•- ..--» t* -' - -v-'-"'-''- -' - - — -

 '" • ••• V-w L-»\-»V W^^WWPWf^^W

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Section 3.4

Final Report:
Theory. Results,
Conclusions

Chapter 3:
C Program Books

Section 3.4:
Secondary Text:
Metadata and
Commentaries

Page 33

Secondary Text: Metadata and Commentaries

Also located on the program pages are two kinds of secondary
text, selected metadata and program cross-reference information.

Program Page Headers
Program page headers include selected metadata under the con-
trol of the user requesting the listing.

KracS
fcv

Program Page Footnotes
Program page footnotes should include cross-references to the
definitions of identifiers declared "externally" to that particular
file.

•.'•*-»

'--.

•:.:-vv:--vv.v.v:: -"- •*- •"- »". <". -'

-• •••-•:-,• .y-

-• .-

fr^>frfa;>>a^^

• u^u^ff^m^rr^T^^ii'^^MMM

Program \ isudlizdtion Project
Human Computing Resources
Aaron Marcus and Associates

Section 3.5

Final Report:
Theory, Results.
Conclusions

Chapter 3:
C Program Books

Section 3.5:
Tertiary Text: Indices
and Overviews

Page 34

Tertiary Text: Indices and Overviews

Program Metrics

A list of metrics [Gilb, 1976; Perlis, Sayward & Shaw, 1981] would
include numerical tables and charts encapsulating significant pro-
perties or qualities of the program. Software engineers and human
factors specialists must determine their proper content.

Program Signatures and Condensations _^___^_
Program signatures and program condensations are visual repre-
sentations of the code that compress the text into small diagrams or
symbols. These allow a viewer to quickly scan many pages of a
program.

• •

.*- jvv-

Cross Reference Index

Cross reference listings detail where every identifier is declared
and all instances of its use.

Key Words in Context Index
Key word in context listings show all program phrases alphabeti-

cally in the context of their surrounding text.

i

Call Hierarchy

A call hierarchy diagram shows the nesting of function calls.

Other Diagrams

Various other diagrammatic representations [Martin & McClure.
1985] that portray the structure of the program should also be
included.

-*\VA

..;.->.-; •
v. .-, — .- '.••.'-•.•:.•-.•

LN .*- »v

• m

•^•^ i • J FiMPy.'F ^tfip.pj • F v P p'i i > i • • m w r^TT' ^ 4 nm n

•ir.i'A'-'1

•.

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report:
Theory, Results.
Conclusions

Chapter 3:
C Program Books

Section 3.6

Section 3.6:
Tertiary Text:
Programmer
Documentation

Page 35

Tertiary Text: Programmer Documentation

The Installation Guide and README File
An installation guide contains instructions on how to install a sys-
tem. In a UNIX distribution, it is typically part of a "README" file.
In the UNIX world, a README file is by convention included on an>
tape containing a software distribution. This file is the first read by
the programmer upon receipt of the system, and thus should be a
guidebook to what is in the distribution.

The Make File
In the UNIX world, the "make" file is used by the UNIX "make'
program to facilitate system recompilation and regeneration.

:v

»jPkv\<

u v.
•V\-;-y

Maintenance Guide

The maintenance guide contains instructions on how to maintain
the system. It is thus an additional commentary on the program.

¥

r. - • : •-"-."'/_\v."w<\ •- •-

---•-••'

F«i

_•,, _.,. _• ^,. ..-

^^^^•^^^^^^•^^^^^^••JPPWB^WP. *' p,i^^^^Wi^W^WW!W!WP

Program V ttuah/aiion Project
Human C om puling Resources
Varon Manu« MM Associates

Final Report
Fheorv Results.
Conclusions

Chapter 4
Graphic Design of C
Source Code and
Comments

Page 37

The Visual Parsing of Statements
Using typographic attributes to enhance the ability of the reader to
identify and understand complex program statements.

The Presentation of Function Definitions
Clarifying the structure of the definitions of C functions.

The Presentation of Program Structure
Enhancing the structure of a program in terms of its constituent
parts, for example, its constituent files, declarations, and function
definitions.

Ch£i

M **? * * •

*.-

k 7_^r

»V

tv>:
«>;•»

v&üdh

- V. A'-.-

• •» - - . • -
• * > _• •
O \r • " <s." •

> I * *-» '-* ~v- - » - -

- <• '". *". -'.
*

-,-.-\i>

•aw
•\V W

-.••. •". •-. •-. -'.'".•'- •". -'. -"-*".'• •'. •".-V -".-". •*«-". A-•."••.'-•.'••."•• "•• V '."*".•"*/•.•'

••••• f • ••"•II'• ^^w^^^ w*******^***^^!^^^^^^^ -•^r*

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report:
Theory, Results,
Conclusions

Chapter 4:
Graphic Design of C
Source Code and
Comments

Section 4.1:
The Presentation of
Program Metadata

Page 38

Section 4.1 The Presentation of Program Metadata

A full understanding of a program can never come from reading
only the code. Comprehension requires a knowledge of numerous
items of metadata describing the context in which the program
was created and is used. Unlike comments, which usually
describe a piece of a program, these metadata refer to the entire
program. A partial list of program metadata follows:

— Title of program

— Author(s)

— Further developer(s)

— Maintainer(s)

— Owner(s)

— Publisher(s)

— User(s)

— In addition to names for all of the above individuals, their faces,
affiliations, postal and network addresses, and phone numbers

— Location of source code, i.e., machine, directory, file(s)

— Version, revision number

— Date and time of this version or revision

— Date and time that the current listing was created

Metadata appear in the program on the title page(s), table(s) of
contents, and indices, and in the headers of individual program
pages.

Related to but distinct from the metadata are longer texts that
describe the program, such as an abstract, statement of purpose,
and history. These tertiary texts are described in Sections 3.2,
3.5, and 3.6.

..

1 f

* • *»

- -

.>

w.v

." * .* •• .* .*
V

'--'•— -.\-->>>V:;-V-\V^S-:--W:-.C-AV.^W:>

"„-"."J*' yWiy.y.W1 ""•' J «' WW;MlLI.HWWl*Ul.iLUimwwiD • ' v m

:•:•>••:•••:

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report:
Theory. Results,
Conclusions

Chapter 4:
Graphic Design of C
Source Code and
Comments

Section 4.2:
The Spatial
Composition of
Comments

Page 39

Section 4.2 The Spatial Composition of Comments

Traditional methods of structuring programs pay little attention to
developing and enhancing the content and method of presenting
comments in relationship to code. Comments, if added at all, are
often an afterthought, an unpleasant reminder that management
is concerned about issues of program readability and maintaina-
bility. Nor is the process of creating comments and integrating
them with code facilitated by the interactive text editors and pro-
gram development environments commonly available.

In our research we were unable to deal with the management
issues implied by the legislation of adequate comments nor with
the literary and stylistic concerns of making comments both
appropriate and meaningful. Instead, we have been concerned
with presenting comments for maximum effect, both in isolation
and in relationship to code.

To distinguish and highlight comments, we have distinguished
external comments (those outside a function definition), internal
comments (those within a function definition, which appear on
their own line in the input text), and marginalia (those within a
function definition, but which do not appear on their own line).
The typographic variations that we have considered or explored
include:

— Comments integrated with code in a one column format: com-
ments strictly separated from code in a two column format;
and various mixtures of one column and two column formats.

— Assuming a two column format, code on the left with comments
on the right, or code on the right with comments on the left.

— Assuming a two column format, variations in the width of the
code in relation to the width of the comments, for example, 2:1
or 3:1.

— Use of the same font for code and comments, use of variations
of one font (roman, bold, italic), and use of three different fonts
(for example, a square-serif font such as American Typewriter,
a serif font such as Times Roman, and a sans-serif font such as
Helvetica).

— Variations in the point size and leading of the comments rela-
tive to the point size of the code.

— Use of various diagrammatic notations, such as leader lines,

L^^^V-.V',- -• V-V-^ SW

WsliVJW m

Ml

r * - f

* - • - * -

W\XrJC

•*l *"• •"'- '

•". -".'-Vi

— - L n —

•-•••.•• •.•••. >mi*m K'V wn.iim L"VUWL'W L nvwiv uiii^'.'nn".1'1, y% •* »7 7^y'-y"^''T-'"*"''"">-"*'*^'

&

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

i >al Report:
t neory. Results,
Conclusions

Chapter 4:
Graphic Design of C
Source Code and
Comments

Section 4 2:
The Spa'.ial
Composition of
Comments

Page 40

arrows, or connecting braces, to indicate connectivity between
code and comments.

— Use of various gray scale tints overlayed on regions containing
various kinds of comments.

— Use of various kinds of rules and boxes to delimit regions con-
taining various kinds of comments.

i •:•-•:•.'>•

Me*

J*.V.

A-/.*-'

-. A •- - •.- v v V.-V- ''•
V V- •".%'• A -v'V- jvtffcM •»•-'T* *•*•-" » " » w » ' i IT* * •• if» Ji

•\s\%\V.VW\

^.^^^v^Vvi»>^l^^^:i^^^.^'^"r^^^V''1'^^l'f- • ••'•••- »"» ' >v w;m*v w ••••••—,• •• Pip m • • *

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report
Theory. Results.
Conclusions

Chapter 4
Graphic Design of C
Source Code and
Comments

Section 4 3
1 he Typography of
Punctuation

Page 41

l
ft.

Section 4.3 The Typography of Punctuation

The punctuation marks of computer programs consist of separa-
tors such as "V and *7\ containment symbols such as "(" and ")*
and operators such as *V\ "!", and "!«". The legibility of punctua-
tion marks in program text is a critical component affecting the
comprehensibility of a program, much more so than the legibility
of English language punctuation affects the comprehensibility of a
passage in English.

>.v

We have therefore considered or experimented with various meth
ods of enhancing the legibility of program punctuation, including:

— Emboldening and/or enlarging punctuation marks.

— Kerning compound (multicharacter) operators.

— Substituting symbols that are more legible.

It is obvious that» for C code, the ratio of punctuation marks to
alphabetics and numerics is quite different than for prose text.
Unfortunately, no typeface currently exists that has been optim-
ized for use in representing computer programs.

.- -

„V

•J>£

^^1 vlv *_ •^ V.', • v" v\' 'j^^l

^^^^^^•^ m^^^w ^*^^^ ••"••«" •fSJS * • • ifiMIHIIHII

Pro|rjm V tcudli/afion Project
Human (omputmg Resource«
Aaron N4arcu* and Associates

hinal Report
Theors Results
((inclusions

Chapter 4
GrapMc Design of C
Source Code and
Comments

Section 4.4:
Typographic
Encodings of Token
Attributes

Page 42
:«

>'V

Section 4.4 Typographic Encodings of Token Attributes

Current attempts at program visualization often employ crude
mechanisms for distinguishing typographically one kind of token
from another. Reserved words are often shown in bold face; man-
ifest constants are often named using capital letters only. These
attempts, typical of many prettyprinting programs, represent but
a small fraction of the wealth of the purely typographic possibili-
ties for enhancing the legibility and readability of programs. The
optimum encoding is a complex synthesis of the reader's needs for
clarity when scanning the text with a variety of search motives
and when examining the text slowly and in detail. Unfortunately,
extensive data on programmer's reading patterns is not yet avail-
able in Ihn literature of computer science or visible language.

S3

We have experimented with mappings from C token attributes to
typographic attributes. We first organized C token attributes
according to a token hierarchy. This procedure allowed us to dis-
tinguish typographically the following classes:

Comments (see Section 4.2)
External comments
Internal comments
Marginalia comments

Punctuation tokens (see Section 4.3)
Separator symbols
Containment symbols
Operators

Simple operators
Compound operators

Other tokens
Reserved words

Preprocessor reserved words (see Section 4.5)
Declarative reserved words
Control reserved words
Control flow altering reserved words

Variables
Local variables
Global variables
Static variables

Preprocessor macro names
Manifest constants
Other macros

i* •:

V-

:•. • •<:

• •-- --. - - •

-

J—
J -• »da ~_j- - * -«• _, m~ ^~—

• --

••..U'•'••'••'•'•••.' • '

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report:
Theory, Results,
Conclusions

Chapter 4:
Graphic Design of C
Source Code and
Comments

Section 4.4:
Typographic
Encodings of Token
Attributes

Page 43

4L_i

Other identifiers
Function names in declarations
Function names in use
Typedef names
Type tags
Structure and union tags
Structure and union member names
Enumeration tags
Enumeration constants
Statement labels

Constants
Integer, floating point, and character constants
String constants

We then considered or experimented with the visible language
appearance of these token attributes to achieve optimum legibility
and readability. Attributes used in the encodings included the fol-
lowing:

— Choice of typeface, for example, Helvetica, Times Roman, or
American Typewriter.

— Choice of weight, for example, medium or bold.

— Choice of proportion, for example, condensed, normal, or
extended.

— Choice of slant, for example, roman or italic.

— Choice of point size, for example, 8, 10, or 14 point.

— Use of capitals or lower case, for example, all capitals, all lower
case, initial capitals, small capitals, embedded capitals, and
standard prefixes (such as "#").

— An overlayed gray screen tint, or reversed type (white on
black).

 — • - >-

J
•

».» .„ ^ — -— - — -- ^_ •L^-/'-.-V' -»*— «. -• '^. -. -» _» •

wFBjm»?***^***1^ ' •"•''"'"'"" "•' •"•"••
IIMM" i.^Wifl^

Section 4.5 The Presentation of Preprocessor Commands

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report:
Theory. Results.
Conclusions

Chapter 4:
Graphic Design of C
Source Code and
Comments

Section 4..S:
The Presentation of
Preprocessor
Commands

Page 44

The lexical structure of C encodes all preprocessor commands
with a prepended "#*\ In addition, a standard convention for C
programming is the use of all capitalized letters to differentiate
preprocessor identifiers (such as manifest constants) from all
other tokens.

r.v.y.

We have considered or experimented with additional encoding
and differentiation, for example:

— Use of typographic attributes such as described in the preced-
ing section.

— Use of positional encodings such as locating all preprocessor
commands at the left margin or even exdenting them so that
the "#" is in the margin.

— Use of definitional encoding, i.e., showing the macro call in
relationship to the text into which it expands.

£

V - \>

:•:

&

*m~ C V

A \v

• • V *.- V -vv

F**

_• ..* -• «• *• *•* .* •

iäj££&äzj±^^

- - - ^ ^^^^ •••••• ^^^^**w^-*m

v'i:-: >-

Program Visualization Project Final Report: Chapter 4: Section 4.6: Page 45
Human Computing Resources Theory. Results, Graphic Design of C The Presentation of
Aaron Marcus and Associates Conclusions Source Code and

Comments
Declarations

Section 4.6 The Presentation of Declarations

Thus far we have considered only a program's imperative state-
ments, i.e., statements that transform existing data to produce new
data. However, much of a program's intractability often occurs in
the declarative aspects, i.e., the declaration of variables as
instances of particular data types and the initialization specifying
values for certain variables. Again, the issue is complicated by
the fact that programs are often scanned for a variety of motives.

We considered or experimented with various methods of using
rules and tabular typesetting to enhance the legibility and reada-
bility of complex C data declarations, type definitions, and data
initialization. These typographic techniques included:

— Consistent use of line spacing, underline rules, and gray screen
tints to distinguish sequences of similar lines.

— Multi-column setting of long sequences of short declarations or
of lengthy initialization text.

— Tabular setting of sequences of declarations of variables of
simple type.

— Tabular setting of declarations of variables of complex type.

P?

'.

•/.-.
:-.--:

.v.---.-.*-.,-.,\.\v-.v, \

i* -».-..»'••••'•• «"•!•'-- • »•• /• .•'->"-• - .',v_v •• «•v v v v; .w \ v.v;i..v-\-.\-.v:.r:^'--.>.'--.v.'^.v.' \^:,.j;^:^:^>^:ät&<1L-\

'^^^^^m ̂ ^^^^^^w^^^ m\ m •.« w Wj^ "PW^^

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report:
Theory, Results.
Conclusions

Section 4.7

Chapter 4:
Graphic Design of C
Source Code and
Comments

Seciion 4.7:
The Visual Parsing of
Expressions

Page 46

The Visual Parsing of Expressions

One of the most difficult aspects of the detailed reading of a com-
puter program occurs in the attempt to parse a complex (arithme-
tic or logical) expression. This is particularly true in the program-
ming language C, where 46 different operators occur at 16 levels
of precedence, some associating left to right, others associating
right to left [Harbison & Steele, 1984]. Current methods of pro-
gram visualization provide little help to the reader trying to deci-
pher an expression other than the explicit indication of nesting
and grouping through the inclusion of parentheses. The resulting
visual clutter and masking of what is essential is readily apparent
in languages such as LISP.

3. V, % , J

I
«•»to

•. •.** *

•

••-"•

We considered or experimented with various methods of using
typographic attributes to enhance the legibility and readability of
complex C expressions. These typographic techniques included:

— Use of ligatures, kerning, and other controls over letter spacing
to bind tokens together more tightly.

— Controls over word spacing.

— Variations of the point size of operators.

— Variations of the weight of operators.

— Control over the vertical placement of unary operators.

— Variations in the point size of parentheses.

— Use of light square under-brackets or other diagrammatic nota-
tions.

— Explicit introduction of line breaks.

— Control over the vertical placement of phrases.

m

* V

T— 1 r-

. . »
t •-.*

j\ .*.

• -•'-•'«-•.'.- - -*• -.v-:«-'.'»•.'«••.«*•»"•••.- ••-•* - •-•- *Ä ,', • - ,'- «'. i.*. t.i'. i - •'- «*. t\m\ **. :v;\

» - I ^" •• «J'A'I.M.q.'yjVl^1 KW**V\W\VW^!^^*^*^+^^^*^*^*Q****^**^*

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report:
Theory, Results,
Conclusions

Chapter 4:
Graphic Design of C
Source Code and
Comments

Section 4.8:
The Visual Parsing of
Statements

Page 47

Section 4.8 The Visual Parsing of Statements

Another vital carrier of the meaning of a program is the syntactic
structure of program statements. Statements within a typical C
program may nest recursively. At any level, statements such as
the if, do...while, and switch contain several component expres-
sions or statements that must be parsed and understood in order that
the statement as a whole may be understood. The resulting confi-
guration of separate and nested statements presents a challenge to
effective spatial structuring.

We considered or experimented with various methods of applying
visible language attributes to enhance a reader's ability to parse
complex C statements. These attributes included:

— The amount of indentation used in visually encoding the nesting
of phrases within statements, for example, 1, 2 or 3 picas for
each level of indentation.

— If there are more than 3 or 4 levels of indentation, clustering of 3
or 4 adjacent levels into groups, distinguishing the groups by
larger indentations, rules, leader lines, gray screen tints, or other
visual devices. The indentation of a group could be, for
example, 8, 10, or 12 picas from the left margin of the preceding
group.

— The horizontal position of a left brace, e.g., all the way to the
left, hierarchically aligned with the text on the "current line", at
the end of the text on the "previous line", and all the way to the
right. In the cases of positioning braces in a channel of their
own to the left or the right, the braces can be indented within
the channel various amounts to encode the hierarchy level.

— The vertical position of the left brace, e.g., the "previous line",
between the previous line and the "current line", or the current
line.

— The horizontal position of a right brace, e.g., all the way to the
left, at the end of the text on the "current line", and all the way
to the right. In the cases of positioning braces in a channel of
their own to the left or the right, the braces can be indented
within the channel various amounts to encode the hierarchy
level.

— The vertical position of the right brace, e.g., the "current line",
between the current line and the "next line", or the next line.

— Removal of braces altogether, thereby relying upon precise

W>7

•-.,

-V-->- v.vi

.-'-.-••X-A-

v.v.'-v
- . • . V.V

'-r.V.V.Y.V»y, i'~ <M. v(/i.'Wi.v-.'^v-.'^'i.{i

r •'

'- ."* if*
'.* v* C

-» • • •••« r

^^^•«•w^^r^r^p*^^^*^^v^T*^^T»T»T »T**'^^T^T" i • " • i^T^^^^^^^^^^r^^^^^^r^p^^^r^n^^^

Program \ isualtzaiion Project
Human (omputing Resources
\jron Marcus and Associates

liridl R< port
1 ht'Orx Kciulis
(onclusiom

Chapter 4:
Graphit hesign of I
Source Code and
Con merm

Section 4,8:
The Visual Parsing of
Statements

l'ag. 4S

indentation only to encode visual hierarchy. Alternatively,
replacement of braces with a new diagrammatic notation using
arrows, pointing symbols, nested brackets, parallel vertical
lines, or channels of varying gray value.

Suppression of line breaks normally introduced where state-
ments are very short.

Placement of line breaks according to various rules and heuris-
tics, for example, where the line "runs off the edge", before or
after an operator of low precedence such as "If or ",", or such
as to create a set of "similar" lines.

The amount of indentation used after a line break, in various
increments finer than the amount of indentation used to encode
new levels.

The amount of line spacing used between segments of a broken
line, starting with the standard line spacing and decreasing it
slightly by one or two points.

The use of various diagrammatic notations to indicate continu-
ity with segments of a broken line, such as arrows, ellipses, or
regions of gray value.

The use of various diagrammatic notations such as pointing fig-
ures to indicate "unusual" control constructs. A definition of
this concept for C might be any label, any goto statement, any
continue statement, any break statement not at the end of a
case, any statement ending a case that is not a break state-
ment, and any return statement not at the end of a function defi-
nition.

vV-V»V

:-•

-•&J

•*• -^ - •*--'-

\ "AW - ; •> v 1 •-v .- v- v •..

-vVJ.vV^-^^J>j-rr;.-\gj.t-:._'.- v :.-:A J. -.•••« V v^'-",i/^H\,^^%l^^ A^!a-^ A^-AA-A»AV^,^i

•v ?-*'*•> .••••* f \ßwjm)mmmvmw^n^^9f9ff^9mmfmm ^ \. ^ \rw \r* vTi i"vi". \^" ^T

«ft

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report:
Theory. Results.
Conclusions

Section 4.9

Chapter 4:
Graphic Design of C
Source Code and
Comments

Section 4.9:
The Presentation of
Function Definitions

Page 49

The Presentation of Function Definitions

We also had to develop mechanisms to highlight the program's
constituent structure in terms of its internally defined functions.
The presence of functions help determine for the reader the gen-
eral sequence and rationale for the program's structure. Making
these major "chunks" of the program immediately accessible can
contribute significantly to the program's readability. We consid-
ered or experimented with the following techniques:

— Use of pagination to minimize the splitting of function defini-
tions across page boundaries in ways that result in placing
most of the text on one page and only a few lines on a subse-
quent page.

t> /V JVi

v.v

<\v.

• * - * - V "J

Use of rules of varying weights under the declaration of the
function name and formal parameter list.

Use of rules of varying weights under the last declaration of a
formal parameter.

Use of headlines for the declaration of the function name and
formal parameter list.

Placement of the type of the value returned by the function, if
any, on a line separate from the function name and formal
parameter list.

•_ ^ 'i

I
y - - •. - -

T»v-£- * m
v^;<>: -•

*». -VlN
I^KM A" ^M

w * i i '. •/^"V.^v.g'J^W^^y^^^^^^f^W^^W^lJt^P^^^^^^y

J
Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report:
Theory. Results,
Conclusions

Chapter 4:
Graphic Design of C
Source Code and
Comments

Section 4.10:
The Presentation of
Program Structure

Page 50

Section 4.10 The Presentation of Program Structure

A C program consists of one or more C source files. Each source
file contains a portion of the entire C program, some number of
top-level-declarations. These top-level-declarations are either dec-
larations of identifiers used in the program or function definitions
elaborating the meaning of new C procedural constructs called
functions by defining them in terms of existing C constructs.

SEE, the visual C compiler, produces a listing of a file with respect
to a set of included external files binding the external references.
These included header files typically contain declarations of identif-
iers, functions, manifest constants, and new defined types. The
declared functions are often defined in "standard libraries" which
are stored on the system and which contain functions generally use-
ful to all C programmers.

We considered or experimented with the following techniques:

— Highlighting the global variables by a variety of typographic
methods as in Section 4.4.

— The use of a novel mechanism to aid the reading of complex pro-
grams structured as a collection of files by adding to each pro-
gram page footnotes that contain cross-references indicating
where in an included file an external identifier is defined and
where each identifier defined on a page is used. This produces,
in essence, a cross-reference listing distributed throughout the
entire program on pages where it is relevant.

imm

>J

' V-M*J

S vV

• .v

^kfOCw

rVA -* v '--.w
v ." v / v v v
> . . . » I. » .. * JN - » - I

' • '.' v v ••. *.• V.

••%-M->W.^ ;•.--•->:. v >»:: »• v.*. VV>_-

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report:
Theory, Results,
Conclusions

Chapter 5:
Conclusions

Page 51 -\

Chapter 5 Conclusions
i

The previous chapters have presented a classification of issues
affecting program legibility and readability. We have seen that
there are complex interactions of visible language attributes both
among themselves and in relation to the C programming lan-
guage. Despite this, the task of developing a recommended form
has proven to be tractable, and we have been able to do many
experimental variations before suggesting an optimum appear-
ance.

Based on our work, we believe that a comprehensive, consistent,
and effective presentation of a graphic design schema for the
appearance of C is desirable to improve program legibility and
readability, that we have demonstrated the feasibility of develop-
ing such a schema, and that a graphic design manual for the visi-
ble language characteristics is an appropriate vehicle in which to
present the resulting recommended conventions. As, more pro-
grammers use the conventions, as they are refined and improved
through this use, and as more human factors knowledge about
program literature becomes available, the conventions will mature
into effective standards.

In achieving this set of objectives, we have also encountered
many unforeseen conceptual and technical difficulties. When we
began our project, we originally desired a solution for the general
problem of typographic and non-typographic representation of
programming languages for formats that were both static and
those that were dynamic i.e., in an interactive environment. We
soon realized that even the more restricted problem of determin-
ing static, typographic representations was a challenge. At the
time, a wide variety of laser printer fonts of high quality was not
readily available, and it was difficult to create even manually
composed pages. We have also had to combat a great deal of
additional recalcitrant technology (see Chapter 6).

The approach and many of the concrete recommendations for C
can be transferred to other languages, such as Pascal and Ada.
We must advise those attempting such designs, however, that the
task will require extremely careful attention to each language's
unique characteristics. By studying these characteristics, it will
be possible to design effective visualizations that take advantage
of visible language and of the computer language's full potential.

f\>.

I m
y * <»^

V.

.A ,\ y

_*. -w-A --*•-' *"- '*•
.*.- .•:.-

JWW

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report:
Theory. Results
Conclusions

Chapter 5:
Conclusions

Page 52

One of the primary difficulties encountered in making graphic
design evaluations is that our knowledge of detailed reading
motivations and strategies in programmers is limited (see Chapter
6). As a result, it is not yet possible to base decisions among
approximately equivalent appearances on any scientific criteria.
Nevertheless, we believe that our general methodology is sound,
and that our results are significant improvements.

Were we to have merely designed unique prototypes for improve-
ment, this would have had some value. However, we have gone
beyond this to provide a tool for generating automatically
improved appearance for most C programs. In addition, because
it is likely that our conventions will change over the coming
years, we have also provided a flexible tool for editing and refin-
ing the appearance of these automatically produced program
visualizations. Our SEE compiler is one of the most elaborately
tunable visible language processing engines available, building as it
does both upon the technology of the Portable C Compiler [Johnson,
1979] and upon all of TROFF's text manipulation capabilities. We
have pushed these tools as far as they can go in directions for which
they were never intended. Future developers will therefore need to
provide SEE's functionality (see Volume 6) in a far more appropri-
ate and robust implementation than our prototype.

Thus our approach and our accomplishment have been to design
both the best possible appearance for the C programming language
within technical and time constraints as well as a suitable prototype
of an effective tool for automating, editing, and refining this
appearance.

The details of our future research directions are detailed in the next
chapter.

fero

J

fXpvy

®~

00
v< • *

m
v>..v--
SüKK
I

f .." •. .•• JV •> -"" -"- -"" A VL.'V. «.KOV-V- vv-v

 mmr* • ^rt'^'l'.ili'HT^^^'l • • • IHU HIMlUMIW^fT^yPPPfP

Program Visualization Project Final Report: Chapter 6: Page 53
Human Computing Resources Theory, Results, Future Research
Aaron Marcus and Associates Conclusions

chapter 6 Future Research

Program Visualization Algorithms
There are a number of area fundamental to the enhanced presenta-
tion of source text that we have not yet automated. These are the
automatic introduction of white space, appropriate automatic line
breaking, appropriate automatic page breaking, incorporation of
programmer formatting intentions, display of pragmatics, display of
diagrammatic representations, and comprehensive automatic warn-
ings and annotations.

•v.»;

/• r.'. >•

Good programmers add blank lines (white space) to enhance the
readability of their code. A program visualizer must do this auto-
matically and correctly. An effective algorithm will note the tran-
sitions between different kinds of program source text, classifying
each line as a comment, a preprocessor command, a component of a
function header, a statement within a function body, a component
of a type definition, and a component of any other kind of declara-
tion. It will then introduce white space between a line of one kind
and a line of another kind. Exactly how much space should be
introduced for each kind of transition, as well as the special cases
not handled by this simple procedure, must be a subject for future
research.

'- •« .*. .-.

No matter how much space exists for a line on a page, some pro-
grammers will write some statements that will need to be "broken"
and wrapped to the next line. The result is of course ugly (see Fig-
ure 5 of Volume 3), but an appropriate line breaking algorithm.can
minimize the visual chaos and damage that results. An effective
algorithm will scan backwards from the point representing the most
text that will fit on the line, will examine the precedence of the
operators that precede that point, and will try to find an operator of
"relatively low" precedence that is not "too far" from that point as
the place at which to make the break. The algorithm will be com-
plicated by the occurrence of long string constants and will have
particular difficulty with lines that begin very deeply indented.

Automatic page breaking and pagination is an even more difficult
problem. An implementation problem with the current generation
of text formatters (see below) is the need for a great deal of look-
ahead in order to do the page breaking properly. There are also v;>S^
severe conceptual problems. The basic idea is that there should ide-
ally never be less than three lines in a related "group" of statements

«TV»

'W.^'^VWW •T1'.1'1 T* TOff^fW^

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report:
Theory. Results.
Conclusions

Chapter 6:
Future Research

Page 54

at the top or the bottom of the page. The notion of a group here is
related to the concept of the "kind" of source I t line defined
two paragraphs above. The algorithm becomes difficult because it
is not always possible to fulfill this condition, because we want to
break the page at a point that is as shallowly nested as possible,
because we want to avoid separating an external or internal com-
ment from the code following it to which it typically refers, and
because we want at almost any cost to avoid breaking in places
such as in the middle of a function header, a typedef definition,
or a structure definition.

<•. • - •. *t

X•

*.%

• • * k • k "4

An alternate approach to the optimization of line breaking and
page breaking and to the very difficult unsolved problem of the
effective display of initializers is the incorporation of programmer
formatting intentions. In other words, the visualizer should heed
the directions of the programmer when she inserts carriage returns
in the middle of statements, extra carriage returns between state-
ments or function definitions, and tabs or carriage returns in the
middle of expressions or initializers. How to reconcile these speci-
fications with the default automated decisions of the visualizer is a
subject for future research.

Another important topic is the display of pragmatics, features of the
code in use. A good example is the need to know what code has
changed since the last version. An effective algorithm may employ
conventions such as the use of a new font or a gray background to
highlight code that has been added, and a diagrammatic convention
such as a strike-through line to show where code has been deleted
and what has been removed.

We have in our work not yet touched on the possibilities for and
the problems in the automatic generation of effective diagrammatic
representations. There is a rich variety of techniques to be consid-
ered (see, for example, [Martin & McClure, 1985]). Future
research is required to select the most valuable representations, and
to devise algorithms for automatic conversion between source code
and diagram.

Finally, the introduction of fingers pointing at "abnormal" control
flow illustrates the need to develop mechanisms for the automatic
addition of warnings and annotations. Other examples are the con-
ditions currently detected by the LINT program [Johnson, 1978].
These include unusued variables and functions, variables used
before they are set, unreachable parts of the program, and
mismatches between function declarations and uses in terms of the

•fVWVT

5

fc

<VA

.*- -'* -*»
' » *

* """O * "

&£&&

1-7-, r^

• - •-• -«-- -- -.P/Vl^-lv^Vi^^ " • - '-*-»--<-'- •--•-'

r*
.V V1* '.'^.»'.L • V »JLT'-"*''-* •' * '•*

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report:
Theory, Results,
Conclusions

Chapter 6:
Future Research

Page 55

iis^:
*. •. • i • - . y» « -• • - v

A'\V

/A'V

the number and types of arguments. Researchers in automatic
programming will be able to propose far more substantive ways in
which a programmer's assistant can detect features of a program
and write its suggestions on the listing for consideration by the pro-
grammer.

' » ^ t • « ** • •
» ' - "_» »Jt * • . ^ , • --r.

Visualization of other Programming Languages
Our work needs to be extended to programming languages other
than C.

The extension to other ALGOL-like languages, e.g., PASCAL and
ADA, will be straightforward. The most significant area where
some conceptual work may need to be done could be in the effec-
tive representation of multi-tasking in ADA.

Languages for artificial intelligence work, e.g., LISP, PROLOG, and
SMALLTALK, may present a greater challenge. Designers will have
to combat the sea of parentheses presented by LISP and will need to
consider the rich data structures and control flow mechanisms
either directly present in these languages or available through their
many extensions.

Interactive Enhancements of Source Text
Even more interesting is the extension of this work to the interac-
tive display and manipulation of program source text. m
One immediate problem that must be faced is the lower resolution
(typically, no more than 100 dots per inch) of these devices. This
may require modification of many of the techniques that employ a
variety of fonts, styles, and sizes and that employ rules and other
diagrammatic devices.

On the positive side, interactive program visualization offers a host
of new opportunities to incorporate dynamics, animation, color, and
sound. We are no longer faced with the difficult problem of estab-
lishing "the best" mapping between token types and typographic
styles, for the program can be easily re-displayed with different set-
tings. Even more significantly, we can depict through image
dynamics and through animation features of the program in execu
tion This is, quite literally, an entire new dimension of program
visualization.

•:*.->

^^—"—^-^^-^—^«

Program \ i«ualizatton Project
Humjn (omputtng Resources
**ron Marcus and As*ooaies

r mal Report
theor\ Results
Conclusions

Appendix A
Bibliography

Page 58 vV-x

Appendix A Bibliography
A'I&T Bell Laboratories (1985). The Cprogrammer's handbook
I.S.A.: Prentice-Hall Inc. P

Baecker, R. & Marcus, A. (1983). On enhancing the interface to the
source code of computer programs. Proc. Human Factors in Com-
puting Systems (SIGCHI '83), Boston, December 1983, 251-255.

Baker, F.T. (1972). Chief programmer team management of pro-
duction programming, IBM Systems Journal, 11 (1), 56-73.

Chaparos, A. (1981). Notes for a federal design manual. Wash-
ington. D.C.: Chaparos Productions.

Dahl, O.-J., Dijkstra, E.W. & Hoare, C.A.R. (1972). Structured
programming. London: Academic Press.

Eco, U. (1976). Theory of semiotics. Bloomington: Indiana Univer-
sity Press.

Gerstner, C. (1978). Compendium for lite: ates. Cambridge:MlT
Press.

,*—*—*.

!K«W V. A

Gilb, T. (1976). Software metrics. Studentliteratur, Lund Sweden.

Grogono, P. (1979). On layout, identifiers and semicolons in pascal
programs. SIGPLAN Notices, 14(A), 35-40.

Gustafson, G.G. (1°79). Some practical experiences formatting pas-
cal programs. SIGPLAN Notices, /4(9), 42-49.

Gutz, S., Wasserman. A.I. & Spier, M.J. (1981). Personal develop-
ment svstems for the professional programmer. Computer, April
1981,45-53.

'»-^

Harbison, S.P. & Steele, Jr., G.L. (1984). C:A reference manual.
Prentice-Hall.

Higgins. D. (19"9). Program design and construction. Prentice-
Hall.

^.% **• >

vvv\v

Hueras. J. & Ledgard. H. (1977). An automatic formatting program
for pascal, SIGPLAN Notices, 12(7), 82-84.

. - . -- 1-V-^ -V,V 1, - ', • .\ -*1 -\ .r . ••• i I -',' kM-, -'• .'•> .'- L' T .'.: I « - - .' ^ - • -'• -'.- ^ - . - ^-^ -^ '^ --> ' 1 a '^'^'^^^^^^^

^^^w^w^ m

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report:
Theory, Results,
Conclusions

Appendix A:
Bibliography

Page 59

Johnson, S.C. (1978). LINT, a C program checker. UNIX
Programmer's Manual Volume 2.

Johnson, S.C. (1979). A tour through the Portable C Compiler.
UNIX Programmer's Manual Volume 2.

•2 m?
k
•My?
.-.

i

&3& M>

Kernighan, B. & Plauger, P.J. (1976). Software tools. Addison-
Wesley.

Kernighan, B. & Ritchie, D. (1978). The Cprogramming language.
Prentice-Hall.

Kernighan, B. (1982). A typesetter-independent TROFF. Bell
Laboratories Computing Science Series Technical Report No. 97,
March 1982.

I * - * s * .

V v v --. v •- *. % *

Leinbaugh, D. (1980). Indenting for the compiler. SIGPLAN
Notices, 15 (5), 41-48.

Lions, J. (1977). A commentary on the UNIX operating system.
University of New South Wales, Australia.

Marcus, A. & Baecker, R. (1982). On the graphic design of program
text. Proceedings of Graphics Interface 82,302-311.

Martin, J. & McClure, C. (1985). Diagramming techniques for
analysts and programmers. Englewood Cliffs, NJ: Prentice-Hall,
Inc.

Miara, R.J., Musselman, J.A., Navarro, J.A. & Schneiderman, B.
(1983). Program indentation and comprehensibility. Comm.ofthe
ACM , 26 (11), 861-867.

Nassi, I. & Schneiderman, B. (1973). Flowcharting techniques for
structured programming. SIGPLAN Notices, 8(8), 12-26.

MVMf

r^^

Oppen, D.D. (1980). Prettyprinting. /iCM Transactions on Pro-
gramming Languages and Systems, 2 (4), 465-483.

Organick, E. & Thomas, J.W. (1974). Computer-generated seman-
tics displays. Proc.iFtP Congress, Applications Volume, 898-902.

Parnas, D.L. (1972). On the criteria to be used in decomposing sys-
tems into modules. Comm.ofthe ACM , /5 (12), 1053-1058.

•_• o w*

.*• Vi

•a.

-.- •/.%." -.' V -- •-• -/ " -." -. -. sT •.' -.* •- */ %' - ' •" •-' -." ."

-/--.- -.-0v\.v.v-••-.-- \ . . .-.--.--.v.vjv.v..-.•.-/.-.-.-,
— - . . " • •* - • - ***i-****Mfc^hkJh^

•v J1

vm$
-*-*

^7f^ .-• ."*• 7v\^^-.-«i-» vy •.-• .-* '.• • vi-» v*\-» '•» v *.T vrwyr v v* v 'r* '-"» ^>T-T^ '.'' "A'TT* ^WVW^T^*^"T'JT^'WT^ *^^-> p f V ^JTFJf

s

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report:
Theory. Results,
Conclusions

Appendix A:
Bibliography

Page 60 KP

Perlis, A., Sayward, F. & Shaw, M. (Eds). (1981). Software met-
rics: An analysis and evaluation. MIT Press.

Perlman, G. & Erickson. T.D. (1983). Graphical abstractions of
technical documents. Visible Languages VII (4), 380-389.

Pike, R. & Presotto, D.L. (1985). Face the nation. Proceedings of
the Summer 1985 Usenix Conference, Portland, Oregon, June
1985,81-86.

Rose, G.A. & Welsh, J. (1981). Formatted programming languages.
Software -- Practice and Experience, 11,651-669.

m
V' s$

-^

Ross, D. (1977). Structured analysis (SA): A language for communi-
cating ideas. IEEE Transactions on Software Engineering, 3(1),
16-34.

Rubin, L. (1983). Syntax-directed pretty printing -- A first step
towards a syntax-directed editor. IEEE Transactions on Software
Engineering, 9 (2), 119-127.

Ruder, E. (1973). Typographie. New York: Hastings House, Visual
Communication Books.

Teitelman, W. (1979). A display oriented programmer's assistant.
Int. Jour. Man-Machine Studies, 11,157-187.

r
w

Wasserman, A.I. (1981). Tutorial: Software development environ-
ments. Los Alamitos,CA: IEEE Computer Society Press.

Weizenbaum, J. (1966). Eliza — A computer program for the study
of natural language communication between man and machine.
Comm.oftheACM ,9(1), 36-45.

-•".'

Wirth, N. (1971). Program development by stepwise refinement.
Comm.oftheACM , 14 (4), 221-227.

Wirth, N. (1977). Modula: A language for modular multiprogram-
ming. Software-Practice and Experience, 7(1), 3-35.

Yourdon, E. (1979). Structured walkthroughs. Englewood Cliffs.
NJ: Prentice-Hall.

r. .-. ••„ --. w- --. .-. r\ .-. s..-..-. .-
--. .".V V. •

/•/.../.••.AViV

<• •*. •*. -*.«". A ^V-'-V.v',' *. -W/.-.v \- v.v v y v -.-\ * -." -.

.»V*1>»^.. -_•

^ vT •." i
. •*•. •".«*.

•»v-iv.

- . • a • . •

.•v v\

•:• -: v>:v^:v
•-*.•• .••'.••vv-V'V

i^iMi^w^m .n^mt'^»pfyn,t.^.i."l'3l"L"LH •-'* A .'-'i .'•-
I'll.) I . ••'^'•"•, V^"'l". ,-»»•«•,-••• Ml •i.^^^^|^^7^^

WRI3HT-PATT2HSON \FH OH 45433-6503

*>:

ASD/53SXD
A7T** »3UG" \T" ttfOlA*ISK I
TOISUT-PATTSRSOH \Fn Oil 45433

ASD/AXPtf
WRIGHT-FATT5R30S \F8 On 45433

«•;«

ASD/AFAIIC/AXAS
WRIGRT-PATTSRSON AFÖ OH 4543 3

£*.

ASD/XRS
WRIGHT-PATTERSON AFB O'l 45433

AFIT/LDS^ - TECHNICAL LIBRARY
BUILDING 640 ARSA D
WRIGHT-PATTERSON AFS Ot'I 45433-5533

Ay'V'Mj/ML-FO

\TTNJ DR. G E . KUHL
WRIGHT-PATTSRSOfl AFB O'l 45433-0533

fc »:

AFWAL/MLT3
W3IGHT-PATT2RS0>1 AFB 0TI 45433

.*•'•*

AFWAL/FISS/SURVIAC
WRIOHT-PATTSRION AFQ OH 4543 3 v » -> ...

AFAMRL/HS
WRIGHT-PATT5R30M AFS O'l 45433-G573

DL-4

ft«

\ •-;••'

Vj --„'- • .' •. -. v •• -
„vv^. •-'•V^A^ —.—.

wyv.l^.1 -iv W«*J «mi PJPIPJPJP.IPJP.'PJF.'P."""." •••yM1 J

ArHRt*/LR*5-TDC
WRIOUT-PATTSR^O^l \FM OH 45433-6533

\5D/SH (C'^P)
\rri ;-n JEFFSRY L PS3L3R
WRIOHT-PATTSRSON AFH 0(! 45433

\FrIRL/0T3
'flLLIAMS \PS \Z 05240-6457

1343EXO/2IHXM

\UI#/LS* 67-342
M\XV2LL %F3 \L, 36112-5564

.VV-'V.

•. - '„

:IQ 3P*C5COM/XPYX
ÄXTO ori ifXLLIAM R MATOUSQ
P^TIRSOH ^^ CO 80914-5001

«Q 'YTC/TTQI
RVIDOLPtl *B TX 7314H

RV900LPH AFH TX 78148

>_>?

COOr ?139GRL TSCBfTXCMi LIBRARY
D»?5NS5 COMMIMICVTIOW

1360 THttHLS IVÜNU3
R5ST0N VA 22190

COM'lA*m COITTROL VTO COMMUNICATIONS DIV
D"VT:tiOPr"-r.7T C5NT2R
MVUT"; CORP3 DSVnL0PM3^T & SDUCVTIOfl COMMAND
ATT1 COD': DIOA
3UAOTIC0 V\ 22134

DL-5

v.v.
:vv:>/

. . . .

•. -. • - • - -. - - -. - . +m -\ A - v •• • - - - •. -. • • - <. «rvV - * •Jf*rS W " -.• - - - • • 'o\,'' • • •VA ^oV. - - *

-•. -•. <;-\

^ •• A.* .v

